Combinatorics, 2016 Fall, USTC
Week 6, October 11/13

Basic of Graphs

Lemma 1 (Sperner’s Lemma (a planar version)). For any assignment of
colors described as above, there always exists a small triangle whose three

vertices are assigned all three colors 1,2, 3.
Proof. Define an auxiliary graph G:

e Its vertices are the faces of small triangle and the outer face. Let z be

the vertex representing the outer face.

e Two vertices of GG are adjacent, if the two corresponding faces are neigh-
boring faces and the two endpoints of their common edge are colored

by 1 and 2.
We consider the degree of a vertex v € V(G) — {2}
(1). If the face of v has NO two vertices with color 1 and 2, then dg(v) = 0.

(2). The face of v has 2 vertices with color 1 and 2. Let the color of the
third vertex be k. If k£ € {1, 2}, then dg(v) = 2. Otherwise k = 3, then
dg(U) =1

We claim that: dg(v) is dd iff dg(v) = 1, iff the face of v has colors 1,2,3.
Then we consider dg(z) and we claim it must be odd. Why? The edge of

G incident to z obviously have to go across A;As. Consider the sequence of



the colors of the points on A; Ay, from A; to As. So dg(z) = # of alternations
between 1 and 2 in this sequence, which must be odd.

By Corollary, since the graph G has the vertex z with odd degree, there
must be another vertex v € V(G) — {z} of odd degree. Then the face of v

has colors 1,2,3.

Theorem 2 (Brouver’s Fixed Point Theory in 2-dimension ). Every contin-

uous function f: A — R has a fized point x, that is f(z) = x.

Proof. Consider a sequence of refinement of A. Define three auxiliary func-

tions f; : A — R for i € {1,2,3} as following: for Va = (z,y) € A,

pi(a) ==
Baa) =y
Psla) =1—xz—y

For a given continuous f : A — A, define M; = {a € A : pi(a) >
B1(f(a))} fori e {1,2,3}

Fact 1: Va € A, 3i € {1,2,3}s.t. a € M;

Fact 2: if a € My N My N Mj, then a is a fixed point.

We can define a coloring C': A — {1,2, 3} such that

(1). Any a € A colored by i must be a € M;.

(2). The coloring C' satisfies the condition of Sperner’s Lemma for each A.

We show the following can be done:



e For the point A;, say ¢ = 1, not 4, = (1,0) € M, so we can let
C(4;) =1.

e Consider a vertex a = (z,y) € A1 As, i.e. x+y = 1. Then a € M;N M,

otherwise 4+ y < 1 contradiction.

We have proved that for any f: A — A such C : A — {1,2,3} exists.
Apply Sperner’s Lemma for the C' on any A;.

= 1 a small triangle, say A(li)Agi)Agi) in A;, which has 3 colors 1,2,3.

Consider the sequence A§”,A§2), ...,Agi), ... Since everyone’s bounded,
there is a subsequence Agil), AgiZ), s A(lij), ... such that lim;_, Agij) =peA

Since the diameter of Agi)Ag)Ag) is going to be 0 as j — 0o, we see that
lim; o0 Agij) = p and lim;_, A:(,)ij) =p

Note that £1(A4}") > Bi(f(4]")) s0 Bi(p) > Bi(f(p). Similarly,fa(p) >
Ba(f(p)) and Bs(p) = Bs(f(p)) = p € MyN MyN M. By Fact 2, p is a fixed

point of fi.e. f(p) ) |

Double Counting

Suppose that we can give two finite sets A and B, and a subset S C Ax B.
And if (a,b) € S, we say a and b are incident. Let N, = # of elements b € B,
Ny = # of elements a € A. Then > _, N, = [S| = >_,c5 No. Define a table
X = (x;;) where

1 iy
Zlfij =
0  Otherwise

Let T'(j) = # of divisions of j=# of i’s in j"* column.

Let T(n) = £ 32" T(j).



Fact: |T(n) — H(n)| < 1, where H(n) = >." % is the n'* Hamonic

i=17

number.

Proof. 377 | T(j) = # 1'sinn x n table= > | % |

Sperner Theorem

Def: Let F C 2" be a family of subsets of [n]. We say F is independent(or
F is an independent system).If VA, B € F,A C B and B C A,in other
words,F is independent < there is no "containment" relationship between
any 2 subsets of F.

Fact: For a fixed k € [n],([z]) is an independent system.

Theorem 3 (Sperner’s Theorem). For any independent system F of [n],we

7= <LnJ>

First proof:(Double-Counting).

have

Def:(1).A chain of subsets of [n] is a sequence of distinct subsets A; C
Ay C A3 C ... C A

(2).A maximal chain is a chain with the property that No other subsets

of [n] can be inserted into it.

Fact 1:Any maximal chain looks like:

¢ CHr} C{ry, 0} C oo Ty, ey xi} o CH{ay, o 20 )

Fact 2:There are exactly n! maximal chains.



Why?Each maximal chain;say C : ¢ C {z1} C {x1, 22} C ... C {21, 29, ..., T, }

defines a unique permutation:
7 [n| = [n],7(i) = x;
We first notice that this bound |F| < ([21).Next,we double count by
2
considering the number of pairs (C, A) such that:
(1). C is a maximal chain of [n].
(2). AeCnNF.

Recall the double counting.

ZNC = #pairs(C, A) = ZNA.
c

A

o Ne=#subsets Ac CNF=|CNF| <L
e N, = #maximal chains C s.t. A € C = |All(n — |A])!

So we have

C C

AeF
!
=S Al Ay =Y A
AcF AcF <|A|)

zZﬁzﬁm

AeF \|5] L3]

= Vl= (LnJ)

5



Second proof:

Def:A chain is symmetric if it consists of subsets of sizes k,k+1,...,[ §],...,n-
k-1,n-k for some k.

For example,n=3 {{2},{2,3},[3]} NOT Symmetric.{¢,[3]} NOT Sym-
metric.

Def:A partition of 2" into symmetric chains is a way of expressing 20"

as a disjoint union of symmetric chains.
Theorem 4. The family 2™ has a partition into symmetric chains.

Proof of Sperner’s Thm(Assuming Thm 2)

Note that any symmetric chain contains exactly one subset of size | 5 ].Since
there are (Lﬁ J) many subsets of size [ |,we see that any partition of 2" into
2
symmetric chains has to consists of exactly (LZ J) symmetric chains.
2

7

For each A € 2[ ,we define a sequence "ajas...a,” consisting of left and

right parentheses by defining
W (77 , Zf Z E A

a; =
”)”, otherwise

e.g. n=7,A = {2,5,6},the sequence is ))()()(()))(() —)))(.

We then define the "partial pairing of parentheses" as following:

" of adjoint parentheses.

(1). First,we pair up all pairs "()
(2). Then,we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.



Note that when this process stops,the remaining unpaired parentheses must

look like this:
)

We say two subsets A, B € 2" have the same partial pairing,if the paired

parentheses are the same(even in the same positions).
n=11:4; = {5,6,8} ))))(00)))
Az = {5,6,8,11} )))(00)(
Az = {4,5,6,8,11} )))((OO)(

AG = {17273a4757678’ 11} (((((()O)(
= {A1, As, ..., A¢} is a symmetric chain.

we can define an equivalence ” ~ ” on 2 by letting A ~ B iff A, B have
the same partial pairing.
Exercise:Each equivalence class indeed forms a symmetric chain. This

proves Thm2.

Littlewood-Offord Problem Fix a vector a = (a4, as, ..., a,) with each
la;] > 1. Let S = {€ = (e1,€2,...,€6,) : ¢ € {1,—1},e.a € (—1,1)},Then
151< (1)

Proof. For Ve € S,define Ac = {i € [n] : a;¢; > 0}.Let F = {A.: € € S}.

= |S] = |F]

We want F is independent system.



Suppose NOT say A, Ae, € F,Ae, C A,

€1.ac(—1,1)

€.ac (—1,1)

n

€ .a = Z la;| — Z |a¢|=22 |ai|_2|ai|

1€Ae; i¢Ae, 1€Ae; =1

€.a—€.a=2( Z |la;| — Z la;|) > 2|a;| > 2.for some j € A, \Ag

i€ Ae, jEA,

But this is a contradiction as |ex.a — €. a| < 2.



