Combinatorics, 2016 Fall, USTC Week 6, October 11/13

Basic of Graphs

Lemma 1 (Sperner's Lemma (a planar version)). For any assignment of colors described as above, there always exists a small triangle whose three vertices are assigned all three colors 1, 2, 3.

Proof. Define an auxiliary graph G:

- Its vertices are the faces of small triangle and the outer face. Let z be the vertex representing the outer face.
- Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the two endpoints of their common edge are colored by 1 and 2.

We consider the degree of a vertex $v \in V(G) - \{z\}$

- (1). If the face of v has NO two vertices with color 1 and 2, then $d_G(v) = 0$.
- (2). The face of v has 2 vertices with color 1 and 2. Let the color of the third vertex be k. If $k \in \{1, 2\}$, then $d_G(v) = 2$. Otherwise k = 3, then $d_G(v) = 1$

We claim that: $d_G(v)$ is dd iff $d_G(v) = 1$, iff the face of v has colors 1,2,3. Then we consider $d_G(z)$ and we claim it must be odd. Why? The edge of G incident to z obviously have to go across A_1A_2 . Consider the sequence of the colors of the points on A_1A_2 , from A_1 to A_2 . So $d_G(z) = \#$ of alternations between 1 and 2 in this sequence, which must be odd.

By Corollary, since the graph G has the vertex z with odd degree, there must be another vertex $v \in V(G) - \{z\}$ of odd degree. Then the face of v has colors 1,2,3.

Theorem 2 (Brouver's Fixed Point Theory in 2-dimension). Every continuous function $f: \Delta \to R$ has a fixed point x, that is f(x) = x.

Proof. Consider a sequence of refinement of Δ . Define three auxiliary functions $\beta_i : \Delta \to R$ for $i \in \{1, 2, 3\}$ as following: for $\forall a = (x, y) \in \Delta$,

$$\begin{cases} \beta_1(a) = x \\ \beta_2(a) = y \\ \beta_3(a) = 1 - x - y \end{cases}$$

For a given continuous $f: \Delta \to \Delta$, define $M_1 = \{a \in \Delta : \beta_1(a) \geqslant \beta_1(f(a))\}$ for $i \in \{1, 2, 3\}$

Fact 1: $\forall a \in \Delta, \exists i \in \{1, 2, 3\} \text{s.t. } a \in M_i$

Fact 2: if $a \in M_1 \cap M_2 \cap M_3$, then a is a fixed point.

We can define a coloring $C: \Delta \to \{1, 2, 3\}$ such that

- (1). Any $a \in \Delta$ colored by i must be $a \in M_i$.
- (2). The coloring C satisfies the condition of Sperner's Lemma for each Δ .

We show the following can be done:

- For the point A_i , say i = 1, not $A_i = (1,0) \in M_1$, so we can let $C(A_i) = i$.
- Consider a vertex $a = (x, y) \in A_1 A_2$, i.e. x + y = 1. Then $a \in M_1 \cap M_2$, otherwise x + y < 1 contradiction.

We have proved that for any $f: \Delta \to \Delta$ such $C: \Delta \to \{1, 2, 3\}$ exists. Apply Sperner's Lemma for the C on any Δ_i .

 $\Rightarrow \exists$ a small triangle, say $A_1^{(i)}A_2^{(i)}A_3^{(i)}$ in Δ_i , which has 3 colors 1,2,3.

Consider the sequence $A_1^{(1)},A_1^{(2)},...,A_1^{(i)},...$ Since everyone's bounded, there is a subsequence $A_1^{(i_1)},A_1^{(i_2)},...,A_1^{(i_j)},...$ such that $\lim_{j\to\infty}A_1^{(i_j)}=p\in\Delta$

Since the diameter of $A_1^{(i)}A_2^{(i)}A_3^{(i)}$ is going to be 0 as $j\to\infty$, we see that $\lim_{j\to\infty}A_2^{(i_j)}=p$ and $\lim_{j\to\infty}A_3^{(i_j)}=p$

Note that $\beta_1(A_1^{(i)}) \geqslant \beta_1(f(A_1^{(i)}))$ so $\beta_1(p) \geqslant \beta_1(f(p))$. Similarly, $\beta_2(p) \geqslant \beta_2(f(p))$ and $\beta_3(p) \geqslant \beta_3(f(p)) \Rightarrow p \in M_1 \cap M_2 \cap M_3$. By Fact 2, p is a fixed point of f, i.e. f(p) = p.

Double Counting

Suppose that we can give two finite sets A and B, and a subset $S \subseteq A \times B$. And if $(a, b) \in S$, we say a and b are incident. Let $N_a = \#$ of elements $b \in B$, $N_b = \#$ of elements $a \in A$. Then $\sum_{a \in A} N_a = |S| = \sum_{b \in B} N_b$. Define a table $X = (x_{ij})$ where

$$x_{ij} = \begin{cases} 1 & i|j\\ 0 & Otherwise \end{cases}$$

Let T(j) = # of divisions of j=# of i's in j^{th} column. Let $\overline{T(n)} = \frac{1}{n} \sum_{j=1}^{n} T(j)$. Fact: $|\overline{T(n)} - H(n)| < 1$, where $H(n) = \sum_{i=1}^{n} \frac{1}{i}$ is the n^{th} Hamonic number.

Proof.
$$\sum_{j=1}^{n} T(j) = \# 1$$
's in $n \times n$ table $= \sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$

Sperner Theorem

<u>Def:</u> Let $\mathcal{F} \subseteq 2^{[n]}$ be a family of subsets of [n]. We say \mathcal{F} is <u>independent</u> (or \mathcal{F} is an independent system). If $\forall A, B \in \mathcal{F}, A \subsetneq B$ and $B \subsetneq A$, in other words, \mathcal{F} is independent \Leftrightarrow there is no "containment" relationship between any 2 subsets of \mathcal{F} .

<u>Fact:</u> For a fixed $k \in [n], \binom{[n]}{k}$ is an independent system.

Theorem 3 (Sperner's Theorem). For any independent system \mathcal{F} of [n], we have

$$|\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

First proof: (Double-Counting).

<u>Def:</u>(1).A <u>chain</u> of subsets of [n] is a sequence of distinct subsets $A_1 \subseteq A_2 \subseteq A_3 \subseteq ... \subseteq A_k$

(2).A <u>maximal chain</u> is a chain with the property that No other subsets of [n] can be inserted into it.

Fact 1:Any maximal chain looks like:

$$\phi \subseteq \{x_1\} \subseteq \{x_1, x_2\} \subseteq ... \subseteq \{x_1, ..., x_k\} \subseteq ... \subseteq \{x_1, ..., x_n\}.$$

Fact 2: There are exactly n! maximal chains.

Why? Each maximal chain, say $C: \phi \subseteq \{x_1\} \subseteq \{x_1, x_2\} \subseteq ... \subseteq \{x_1, x_2, ..., x_n\}$ defines a unique permutation:

$$\pi:[n]\to[n],\pi(i)=x_i$$

We first notice that this bound $|\mathcal{F}| \leq \binom{n}{\lceil \frac{n}{2} \rceil}$. Next, we double count by considering the number of pairs (\mathcal{C}, A) such that:

- (1). C is a maximal chain of [n].
- (2). $A \in \mathcal{C} \cap \mathcal{F}$.

Recall the double counting.

$$\sum_{\mathcal{C}} N_{\mathcal{C}} = \#pairs(\mathcal{C}, A) = \sum_{A} N_{A}.$$

- $N_{\mathcal{C}}$ =#subsets $A \in \mathcal{C} \cap \mathcal{F} = |\mathcal{C} \cap \mathcal{F}| \leq 1$.
- $N_A = \#$ maximal chains C s.t. $A \in C = |A|!(n |A|)!$

So we have

$$n! = \sum_{C} 1 \ge \sum_{C} N_{C} = \sum_{A \in \mathcal{F}} N_{A}$$

$$= \sum_{A \in \mathcal{F}} |A|! (n - |A|)! = \sum_{A \in \mathcal{F}} \frac{n!}{\binom{n}{|A|}}$$

$$\ge \sum_{A \in \mathcal{F}} \frac{n!}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} = \frac{n!}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} |\mathcal{F}|$$

$$\Rightarrow |\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

Second proof:

<u>Def:</u>A chain is <u>symmetric</u> if it consists of subsets of sizes $k,k+1,...,\lfloor \frac{n}{2} \rfloor,...,n-k-1,n-k$ for some k.

For example,n=3 {{2}, {2,3},[3]} NOT Symmetric.{ ϕ ,[3]} NOT Symmetric.

<u>Def:</u>A partition of $2^{[n]}$ into symmetric chains is a way of expressing $2^{[n]}$ as a disjoint union of symmetric chains.

Theorem 4. The family $2^{[n]}$ has a partition into symmetric chains.

Proof of Sperner's Thm(Assuming Thm 2)

Note that any symmetric chain contains exactly one subset of size $\lfloor \frac{n}{2} \rfloor$. Since there are $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ many subsets of size $\lfloor \frac{n}{2} \rfloor$, we see that any partition of $2^{[n]}$ into symmetric chains has to consists of exactly $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ symmetric chains.

For each $A \in 2^{[n]}$, we define a sequence " $a_1 a_2 ... a_n$ " consisting of left and right parentheses by defining

$$a_i = \begin{cases} "(", if \quad i \in A \\ ")", otherwise \end{cases}$$

e.g. n=7, A = {2,5,6},the sequence is))()()(()))(() \to)))(.

We then define the "partial pairing of parentheses" as following:

- (1). First, we pair up all pairs "()" of adjoint parentheses.
- (2). Then, we delete these already paired parentheses.
- (3). Repeat the above process until nothing can be done.

Note that when this process stops, the remaining unpaired parentheses must look like this:

We say two subsets $A, B \in 2^{[n]}$ have the same partial pairing, if the paired parentheses are the same (even in the same positions).

$$n=11:A_{1} = \{5,6,8\}))))(()()))$$

$$A_{2} = \{5,6,8,11\}))))(()())($$

$$A_{3} = \{4,5,6,8,11\})))((()())($$
.....
$$A_{6} = \{1,2,3,4,5,6,8,11\} (((((()()))($$

$$\Rightarrow \{A_{1},A_{2},...,A_{6}\} \text{ is a symmetric chain.}$$

we can define an equivalence " \sim " on $2^{[n]}$ by letting $A \sim B$ iff A, B have the same partial pairing.

<u>Exercise</u>: Each equivalence class indeed forms a symmetric chain. This proves Thm2.

<u>Littlewood-Offord Problem</u> Fix a vector $\mathbf{a} = (a_1, a_2, ..., a_n)$ with each $|a_i| \geq 1$. Let $S = \{ \boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, ..., \epsilon_n) : \epsilon_i \in \{1, -1\}, \boldsymbol{\epsilon} \cdot \boldsymbol{a} \in (-1, 1) \}$, Then $|S| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Proof. For $\forall \epsilon \in S$, define $A_{\epsilon} = \{i \in [n] : a_i \epsilon_i > 0\}$. Let $\mathcal{F} = \{A_{\epsilon} : \epsilon \in S\}$.

$$\Rightarrow |S| = |\mathcal{F}|$$

We want \mathcal{F} is independent system.

Suppose NOT, say $A_{\pmb{\epsilon}_1}, A_{\pmb{\epsilon}_2} \in \mathcal{F}, A_{\pmb{\epsilon}_1} \subseteq A_{\pmb{\epsilon}_2}$

$$\begin{cases} \boldsymbol{\epsilon}_1 \cdot \boldsymbol{a} \in (-1,1) \\ \boldsymbol{\epsilon}_2 \cdot \boldsymbol{a} \in (-1,1) \end{cases}$$

$$\begin{split} \pmb{\epsilon}_1 \cdot \pmb{a} &= \sum_{i \in A_{\pmb{\epsilon}_1}} |a_i| - \sum_{i \notin A_{\pmb{\epsilon}_1}} |a_i| = 2 \sum_{i \in A_{\pmb{\epsilon}_1}} |a_i| - \sum_{i=1}^n |a_i| \\ \pmb{\epsilon}_2 \cdot \pmb{a} - \pmb{\epsilon}_1 \cdot \pmb{a} &= 2 (\sum_{i \in A_{\pmb{\epsilon}_2}} |a_i| - \sum_{j \in A_{\pmb{\epsilon}_1}} |a_j|) \geq 2|a_j| \geq 2. for \quad some \quad j \in A_{\pmb{\epsilon}_2} \backslash A_{\pmb{\epsilon}_1} \end{split}$$

But this is a contradiction as $|\epsilon_2 \cdot a - \epsilon_1 \cdot a| < 2$.