
Combinatorics, 2016 Fall, USTC

Week 6, October 11/13

Basic of Graphs

Lemma 1 (Sperner’s Lemma (a planar version)). For any assignment of

colors described as above, there always exists a small triangle whose three

vertices are assigned all three colors 1, 2, 3.

Proof. Define an auxiliary graph G:

• Its vertices are the faces of small triangle and the outer face. Let z be

the vertex representing the outer face.

• Two vertices of G are adjacent, if the two corresponding faces are neigh-

boring faces and the two endpoints of their common edge are colored

by 1 and 2.

We consider the degree of a vertex v ∈ V (G)− {z}

(1). If the face of v has NO two vertices with color 1 and 2, then dG(v) = 0.

(2). The face of v has 2 vertices with color 1 and 2. Let the color of the

third vertex be k. If k ∈ {1, 2}, then dG(v) = 2. Otherwise k = 3, then

dG(v) = 1

We claim that: dG(v) is dd iff dG(v) = 1, iff the face of v has colors 1,2,3.

Then we consider dG(z) and we claim it must be odd. Why? The edge of

G incident to z obviously have to go across A1A2. Consider the sequence of
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the colors of the points on A1A2, from A1 to A2. So dG(z) = # of alternations

between 1 and 2 in this sequence, which must be odd.

By Corollary, since the graph G has the vertex z with odd degree, there

must be another vertex v ∈ V (G) − {z} of odd degree. Then the face of v

has colors 1,2,3.

Theorem 2 (Brouver’s Fixed Point Theory in 2-dimension ). Every contin-

uous function f : ∆→ R has a fixed point x, that is f(x) = x.

Proof. Consider a sequence of refinement of ∆. Define three auxiliary func-

tions βi : ∆→ R for i ∈ {1, 2, 3} as following: for ∀a = (x, y) ∈ ∆,
β1(a) = x

β2(a) = y

β3(a) = 1− x− y

For a given continuous f : ∆ → ∆, define M1 = {a ∈ ∆ : β1(a) >

β1(f(a))} for i ∈ {1, 2, 3}

Fact 1: ∀a ∈ ∆, ∃i ∈ {1, 2, 3}s.t. a ∈Mi

Fact 2: if a ∈M1 ∩M2 ∩M3, then a is a fixed point.

We can define a coloring C : ∆→ {1, 2, 3} such that

(1). Any a ∈ ∆ colored by i must be a ∈Mi.

(2). The coloring C satisfies the condition of Sperner’s Lemma for each ∆.

We show the following can be done:

2



• For the point Ai, say i = 1, not Ai = (1, 0) ∈ M1, so we can let

C(Ai) = i.

• Consider a vertex a = (x, y) ∈ A1A2, i.e. x+y = 1. Then a ∈M1∩M2,

otherwise x+ y < 1 contradiction.

We have proved that for any f : ∆ → ∆ such C : ∆ → {1, 2, 3} exists.

Apply Sperner’s Lemma for the C on any ∆i.

⇒ ∃ a small triangle, say A(i)
1 A

(i)
2 A

(i)
3 in ∆i, which has 3 colors 1,2,3.

Consider the sequence A(1)
1 , A

(2)
1 , ..., A

(i)
1 , .... Since everyone’s bounded,

there is a subsequence A(i1)
1 , A

(i2)
1 , ..., A

(ij)
1 , ... such that limj→∞A

(ij)
1 = p ∈ ∆

Since the diameter of A(i)
1 A

(i)
2 A

(i)
3 is going to be 0 as j →∞, we see that

limj→∞A
(ij)
2 = p and limj→∞A

(ij)
3 = p

Note that β1(A
(i)
1 ) > β1(f(A

(i)
1 )) so β1(p) > β1(f(p)). Similarly,β2(p) >

β2(f(p)) and β3(p) > β3(f(p)) ⇒ p ∈M1 ∩M2 ∩M3. By Fact 2, p is a fixed

point of f ,i.e. f(p) = p.

Double Counting
Suppose that we can give two finite sets A and B, and a subset S ⊆ A×B.

And if (a, b) ∈ S, we say a and b are incident. Let Na = # of elements b ∈ B,

Nb = # of elements a ∈ A. Then
∑

a∈ANa = |S| =
∑

b∈B Nb. Define a table

X = (xij) where

xij =

 1 i|j

0 Otherwise

Let T (j) = # of divisions of j=# of i’s in jth column.

Let T (n) = 1
n

∑n
j=1 T (j).
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Fact: |T (n) − H(n)| < 1, where H(n) =
∑n

i=1
1
i
is the nth Hamonic

number.

Proof.
∑n

j=1 T (j) = # 1’s in n× n table=
∑n

i=1b
n
i
c

Sperner Theorem
Def: Let F ⊆ 2[n] be a family of subsets of [n]. We say F is independent(or

F is an independent system).If ∀A,B ∈ F ,A ( B and B ( A,in other

words,F is independent ⇔ there is no "containment" relationship between

any 2 subsets of F .

Fact: For a fixed k ∈ [n],
(
[n]
k

)
is an independent system.

Theorem 3 (Sperner’s Theorem). For any independent system F of [n],we

have

|F| ≤
(
n

bn
2
c

)
.

First proof:(Double-Counting).

Def:(1).A chain of subsets of [n] is a sequence of distinct subsets A1 ⊆

A2 ⊆ A3 ⊆ ... ⊆ Ak

(2).A maximal chain is a chain with the property that No other subsets

of [n] can be inserted into it.

Fact 1:Any maximal chain looks like:

φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, ..., xk} ⊆ ... ⊆ {x1, ..., xn}.

Fact 2:There are exactly n! maximal chains.
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Why?Each maximal chain,say C : φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, x2, ..., xn}

defines a unique permutation:

π : [n]→ [n], π(i) = xi

We first notice that this bound |F| ≤
(

n
dn
2
e

)
.Next,we double count by

considering the number of pairs (C, A) such that:

(1). C is a maximal chain of [n].

(2). A ∈ C ∩ F .

Recall the double counting.

∑
C

NC = #pairs(C, A) =
∑
A

NA.

• NC=#subsets A ∈ C ∩ F=|C ∩ F| ≤ 1.

• NA = #maximal chains C s.t. A ∈ C = |A|!(n− |A|)!

So we have

n! =
∑
C

1 ≥
∑
C

NC =
∑
A∈F

NA

=
∑
A∈F

|A|!(n− |A|)! =
∑
A∈F

n!(
n
|A|

)
≥
∑
A∈F

n!(
n

bn
2
c

) =
n!(
n

bn
2
c

) |F|
⇒ |F| ≤

(
n

bn
2
c

)
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Second proof:

Def:A chain is symmetric if it consists of subsets of sizes k,k+1,...,bn
2
c,...,n-

k-1,n-k for some k.

For example,n=3 {{2}, {2, 3}, [3]} NOT Symmetric.{φ, [3]} NOT Sym-

metric.

Def:A partition of 2[n] into symmetric chains is a way of expressing 2[n]

as a disjoint union of symmetric chains.

Theorem 4. The family 2[n] has a partition into symmetric chains.

Proof of Sperner’s Thm(Assuming Thm 2)

Note that any symmetric chain contains exactly one subset of size bn
2
c.Since

there are
(

n
bn
2
c

)
many subsets of size bn

2
c,we see that any partition of 2[n] into

symmetric chains has to consists of exactly
(

n
bn
2
c

)
symmetric chains.

For each A ∈ 2[n],we define a sequence ”a1a2...an” consisting of left and

right parentheses by defining

ai =

 ”(”, if i ∈ A

”)”, otherwise

e.g. n=7,A = {2, 5, 6},the sequence is ))()()(()))(()→)))(.

We then define the "partial pairing of parentheses" as following:

(1). First,we pair up all pairs "()" of adjoint parentheses.

(2). Then,we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.
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Note that when this process stops,the remaining unpaired parentheses must

look like this:

))))(((((

We say two subsets A,B ∈ 2[n] have the same partial pairing,if the paired

parentheses are the same(even in the same positions).

n=11:A1 = {5, 6, 8} ))))(()()))

A2 = {5, 6, 8, 11} ))))(()())(

A3 = {4, 5, 6, 8, 11} )))((()())(

......

A6 = {1, 2, 3, 4, 5, 6, 8, 11} (((((()())(

⇒ {A1, A2, ..., A6} is a symmetric chain.

we can define an equivalence ” ∼ ” on 2[n] by letting A ∼ B iff A,B have

the same partial pairing.

Exercise:Each equivalence class indeed forms a symmetric chain. This

proves Thm2.

Littlewood-Offord Problem Fix a vector a = (a1, a2, ..., an) with each

|ai| ≥ 1. Let S = {ε = (ε1, ε2, ..., εn) : εi ∈ {1,−1}, ε � a ∈ (−1, 1)},Then

|S| ≤
(

n
bn
2
c

)
.

Proof. For ∀ε ∈ S,define Aε = {i ∈ [n] : aiεi > 0}.Let F = {Aε : ε ∈ S}.

⇒ |S| = |F|

We want F is independent system.
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Suppose NOT,say Aε1 , Aε2 ∈ F ,Aε1 ⊆ Aε2 ε1 � a ∈ (−1, 1)

ε2 � a ∈ (−1, 1)

ε1 � a =
∑
i∈Aε1

|ai| −
∑
i/∈Aε1

|ai| = 2
∑
i∈Aε1

|ai| −
n∑

i=1

|ai|

ε2 � a− ε1 � a = 2(
∑
i∈Aε2

|ai| −
∑
j∈Aε1

|aj|) ≥ 2|aj| ≥ 2.for some j ∈ Aε2\Aε1

But this is a contradiction as |ε2 � a− ε1 � a| < 2.
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